折反射望远镜:
请注意,我们所讲天文望远镜的顺序,一般是按照科技史发展的顺序进行的。
伽利略首先研制了折射望远镜,
人们发现折射望远镜有色差,
牛顿研制了反射望远镜,
嫌牛反焦距长了需要梯子才能观测,
卡塞格林望远镜诞生,
........
那么,折反射望远镜又是怎么诞生的?
这要从望远镜的磨制开始说起。当年牛顿就是被抛物面的磨制难倒了----抛物面主镜的磨制是一个不太容易的工程,而球面的磨制就非常容易。这里需要科普一个小知识:同等精度下,球面镜最好磨制,抛物面镜其次,最难磨制的是平面镜。
牛顿的想法是绞尽脑汁磨制一个精度比较理想的抛物面(能完美成像的条件是波前误差<1/4波长),而施密特则另辟蹊径,试图通过一块折射原件来消除球差。这样做出来的望远镜同等造价下精度会比牛顿镜更高。
于是,SCT诞生了。中文名叫施密特-卡塞格林望远镜,Schmidt cassegrain telescope

这种望远镜前面用一块施密特修正版来修正求面镜的球差,副镜用双曲面以达到延焦的目的。焦距相同时,这种望远镜就比牛顿镜短很多。有人会问“短有什么好处”?
实际上,短的好处非常多。除了小施卡的便携外,大型的施卡由于镜筒比较短,机械变形也比牛顿镜和折射镜轻微。这在摄影中是非常重要的。1000mm焦距以上的摄影,你会看到镜筒重力变形对拍摄效果有毁灭性的影响。
现在市面上卖的施卡,主要有这两家:celestron星特朗和 meade米德。据说这两家施卡的竞争激烈程度,不亚于佳能跟尼康的较劲。
星特朗的施卡我摸过C8HD C14HD这两只。星特朗用HD来标记带有ED彗差改正镜的高精版施卡。
如果购买星特朗的施卡,我建议非HD版不买。原因很简单,HD版是个全能的镜子,长长的焦距可以对付行星,而拆掉副镜加装f/2系统了以后,变成工作在卡塞给林焦点的施密特照相机,可以拍视面积很大的星云。并且由于极其变态的f/2光圈,提高了摄影速度,基本可以告别导星了。
常规镜种最后一篇:马卡
马卡,简称马克斯托夫-卡塞格林式天文望远镜,英文缩写MCT.
是由前苏联砖家马克斯托夫设计完成的。
马卡是一种像质极其优良的折反射望远镜。

折反射系统既有折射又有反射,设计的基本思想是:以折射原件修正像差,以反射原件摆平像场。
马卡的典型设计有两种:三片式和两片式
三片式马卡,由Primary Mirror ,Corrector Plate,Secondary Mirror组成。
而两片式马卡,由Primary Mirror ,Corrector Plate,Secondary Spot组成
看出来差别了吗?
两片式的马卡,是在弯月形修正镜的中间镀了一层高反射铝膜,修正镜是球面的,铝膜也是球面的。
三片式马卡则是直接在修正镜的中心加了一个副镜,这个副镜也是球面的。
图中的这个家伙,是个两片式马卡。
三片式和两片式很难说哪个成像更加优异,但理论上三片式马卡的场曲更小。
为什么马卡全部使用球面镜?前面说过了,是凡使用非球面镜的,周边彗差(coma)都不好控制。而使用球面镜可以避免彗差的问题。多组不同曲率的球面镜(包括透镜和反射镜),可以有效地降低一级球差二级球差,三级球差就不去管它了----因为他已经小于艾里斑(Airy Disc)了
马卡的焦比一般非常长,在有限的体积内,焦比可以达到f/15甚至更高。折反射镜,焦比越高副镜就越小,副镜小就意味着可以获得很锐利的画质。所以马卡式望远镜常常用来作为长焦的目视观测镜。例如VMC200L等型号。
(马卡镜的选购:如果你真的想买马卡镜,信达有两片式马卡,博冠有三片式马卡。其他品牌的我不熟悉,周围没人用我就不敢瞎说。150/1800这种规格的马卡镜,属于比较常规的类型,长长的焦距非常适合打行星和目视观测星系。(别以为深空观测就要短焦,马卡镜看星系秒杀APO))
(补充一点:副镜和锐利度的关系不是唯一的,同等精度下,副镜越小锐度越高。)
天文望远镜的成像特征:
在成像特征里,我主要想给大家介绍一个“分辨率”的概念。没有入门的新手,常常会问这架望远镜能看多远。
我喜欢这样回答他们“想看多远看多远”。
作为一个细致的阐述,我想先说明一个事实:你的肉眼,能看见几百万光年外的仙女座大星系,却永远看不到200米外的一个硬币上的图案。仙女座大星系虽然距离我们很远,但它的直径大得惊人,而硬币虽然离我们很近,直径却很小。
聪明的你,告诉我,在这些观测里,哪个量决定了你能看清多少【细节】?
答案是:视角。
以你的眼睛骨碌一转能够看到的角度为180度,把180度细分,这就得到了视角的概念。望远镜能够放大远处的物体,实际上是因为你在望远镜里看到的物体,视角变大了,细节才觉得更多。通常来讲,月球与太阳的视角(也称视直径)在30分左右,仙女座大星云的视角3度左右,猎户座M42是1度,礁湖星云1度30分。
通过望远镜,你到底能看清多少细节?这取决于望远镜的分辨率。分辨率是衡量一个望远镜最重要的指标之一。
波动光学告诉我们,任何望远镜的成像,即使没有任何像差,在理论上都不可能把平行光汇聚成一个几何上的点。这是因为望远镜的口径限制了高频部分的进入(这属于傅里叶光学的内容,不理解可以不用记,此高频非彼高频)。
一架望远镜会把平行光汇聚成什么样子呢?
是这个样子滴

中心是一个圆盘,外面是一圈一圈的衍射环。我们把这个东西,称为艾里斑
换一个角度看,看一下光强的分布

我们把中间汇聚了85%的能量的部分,叫做艾里斑的主峰。这个主峰的角宽度的一半,就是这个望远镜的分辨率(想问为啥的,自行搜索【瑞利判据】)。
艾里斑的存在,限制了望远镜能看到的最小角宽度,这就是所谓的分辨率。
给一个表达式:分辨率的计算,大家以后可以很方便地计算自己的望远镜能够看得多清晰

λ表示入射光的波长,D表示口径。请记住,这个分辨率仅对于【高精度牛反】【APO】【马卡施卡】有效。其他的如球面牛反,短焦普消等等等等,分辨率都要远低于这个值。