普及点知识:
罗式几何学的公理系统和欧式几何学不同的地方仅仅是把欧式一对分散直线在其唯一公垂线两侧无限远离几何平行公理用“从直线外一点,至少可以做两条直线和这条直线平行”来代替,其他公理基本相同。由于平行公理不同,经过演绎推理却引出了一连串和欧式几何内容不同的新的几何命题。
我们知道,罗式几何除了一个平行公理之外采用了欧式几何的一切公理。因此,凡是不涉及到平行公理的几何命题,在欧式几何中如果是正确的,在罗式几何中也同样是正确的。在欧式几何中,凡涉及到平行公理的命题,在罗式几何中都不成立,他们都相应地含有新的意义。下面举几个例子加以说明:欧式几何:同一直线的垂线和斜线相交。垂直于同一直线的两条直线互相平行。存在相似的多边形。过不在同一直线上的三点可以作且仅能作一个圆。罗式几何同一直线的垂线和斜线不一定相交。垂直于同一直线的两条直线,当两端延长的时候,离散到无穷。不存在相似的多边形。过不在同一直线上的三点,不一定能作一个圆。 ————引自维基百科
罗式几何学的公理系统和欧式几何学不同的地方仅仅是把欧式一对分散直线在其唯一公垂线两侧无限远离几何平行公理用“从直线外一点,至少可以做两条直线和这条直线平行”来代替,其他公理基本相同。由于平行公理不同,经过演绎推理却引出了一连串和欧式几何内容不同的新的几何命题。
我们知道,罗式几何除了一个平行公理之外采用了欧式几何的一切公理。因此,凡是不涉及到平行公理的几何命题,在欧式几何中如果是正确的,在罗式几何中也同样是正确的。在欧式几何中,凡涉及到平行公理的命题,在罗式几何中都不成立,他们都相应地含有新的意义。下面举几个例子加以说明:欧式几何:同一直线的垂线和斜线相交。垂直于同一直线的两条直线互相平行。存在相似的多边形。过不在同一直线上的三点可以作且仅能作一个圆。罗式几何同一直线的垂线和斜线不一定相交。垂直于同一直线的两条直线,当两端延长的时候,离散到无穷。不存在相似的多边形。过不在同一直线上的三点,不一定能作一个圆。 ————引自维基百科