当m>0,n>0时,由m+n=1,可知m,n∈(0,1)
设f(m)=1/m+2/n=1/m+2/(1-m),令f'(x)=-1/m^2+2/(1-m)^2=0,得m=√2-1,n=2-√2
f(m)=1/(√2-1)+2/(2-√2)=1/(√2-1)+√2/(√2-1)=(√2+1)/(√2-1)=(√2+1)^2=3+2√2为最小值
设f(m)=1/m+2/n=1/m+2/(1-m),令f'(x)=-1/m^2+2/(1-m)^2=0,得m=√2-1,n=2-√2
f(m)=1/(√2-1)+2/(2-√2)=1/(√2-1)+√2/(√2-1)=(√2+1)/(√2-1)=(√2+1)^2=3+2√2为最小值