设圆C的横坐标为x,半径为r,则:
(x-1-2*sqrt(r))^2+(x-r)^2=(2*r)^2;r+1=sqrt(2)(x-1)
解得:
r≈0.78158173149922965786, x≈2.2597685235811762489
或:
r=1/4(20-12sqrt(2))+1/2sqrt(520/3-120sqrt(2)-128/(3(181-126sqrt(2)+3sqrt(3(7699-5444sqrt(2))))^(1/3))+(32sqrt(2))/(181-126sqrt(2)+3sqrt(3(7699-5444sqrt(2))))^(1/3)+4/3(181-126sqrt(2)+3sqrt(3(7699-5444sqrt(2))))^(1/3))-1/2sqrt(-508/3+120sqrt(2)+3/4(12sqrt(2)-20)^2+128/(3(181-126sqrt(2)+3sqrt(3(7699-5444sqrt(2))))^(1/3))-(32sqrt(2))/(181-126sqrt(2)+3sqrt(3(7699-5444sqrt(2))))^(1/3)-4/3(181-126sqrt(2)+3sqrt(3(7699-5444sqrt(2))))^(1/3)+((12sqrt(2)-20)(-8-(12sqrt(2)-20)^2)-8(4sqrt(2)-4))/(4sqrt(520/3-120sqrt(2)-128/(3(181-126sqrt(2)+3sqrt(3(7699-5444sqrt(2))))^(1/3))+(32sqrt(2))/(181-126sqrt(2)+3sqrt(3(7699-5444sqrt(2))))^(1/3)+4/3(181-126sqrt(2)+3sqrt(3(7699-5444sqrt(2))))^(1/3))))
几何解法为:

如图,设原点为O。
以圆心G(1,1)半径1画单位圆,在x正半轴上取一点动B,连接BG交圆G于D。
过D做圆G切线交x轴于C,做DCB的角平分线交GB于A。
以A为圆心,AD为直径做圆,交OG于E。这样,点E的坐标由动点B唯一确定。
设动点B横坐标为b,可求得角DBC的角度为arctan(1/(b-1))。
接着求出C点的坐标以及CD的长度,进一步求出圆A的半径AD=r以及A点的坐标。
然后做圆的方程并联立x=y,得(x-1-2*sqrt(r))^2+(x-r)^2=(2*r)^2。
又圆E和圆G相切,得sqrt(2)+1+r=sqrt(2)x。