Reduce[p (p - q) (-2 + 2 p \[Gamma] + \[Gamma]^2) - (\[Gamma] +
p (-2 - q \[Gamma]^2 +
p \[Gamma] (2 + \[Gamma]))) \[Sigma] + \[Gamma] \[Sigma]^2 >
0 && p (p - q) \[Gamma] +
2 \[Sigma] - \[Gamma] (p (3 + p - q) + \[Gamma]) \[Sigma] + (2 -
p \[Gamma] + \[Gamma]^2) \[Sigma]^2 > 0 &&
2 \[Sigma] - p \[Gamma] (p - q + \[Sigma]) >
0 && -(p - q) (-4 +
3 p \[Gamma] + \[Gamma]^2) + (-2 + \[Gamma] (p + p \[Gamma] -
q \[Gamma])) \[Sigma] <
0 && -2 p^2 - \[Gamma] (-1 + \[Sigma]) \[Sigma] +
2 p (q + \[Sigma]) > 0 &&
2 p^2 + (4 + \[Gamma] (1 + \[Gamma]) (-1 + \[Sigma])) \[Sigma] -
2 p (q + \[Sigma] + 2 \[Gamma] \[Sigma]) >
0 && (p - q) (-4 + 2 p \[Gamma] + \[Gamma]^2) + (4 + q \[Gamma]^2 -
p \[Gamma] (2 + \[Gamma])) \[Sigma] >
0 && -(p - q) (-4 +
2 p \[Gamma] + \[Gamma]^2) + \[Gamma] (p (-2 + \[Gamma]) - (1 +
q) \[Gamma]) \[Sigma] + \[Gamma]^2 \[Sigma]^2 > 0 &&
p^2 (p - q)^2 -
p (p - q) (2 p + \[Gamma]) \[Sigma] + (1 + p^2 +
p (p - q) \[Gamma]) \[Sigma]^2 - \[Sigma]^3 >
0 && (-4 + \[Gamma] (4 p + \[Gamma] - \[Gamma] \[Sigma])) <
0 && (-1 + p \[Gamma]) < 0 && 0 < p < 1 && 0 < \[Sigma] < 1 &&
0 < \[Gamma] < 1 && 0 < q < 1, q]

p (-2 - q \[Gamma]^2 +
p \[Gamma] (2 + \[Gamma]))) \[Sigma] + \[Gamma] \[Sigma]^2 >
0 && p (p - q) \[Gamma] +
2 \[Sigma] - \[Gamma] (p (3 + p - q) + \[Gamma]) \[Sigma] + (2 -
p \[Gamma] + \[Gamma]^2) \[Sigma]^2 > 0 &&
2 \[Sigma] - p \[Gamma] (p - q + \[Sigma]) >
0 && -(p - q) (-4 +
3 p \[Gamma] + \[Gamma]^2) + (-2 + \[Gamma] (p + p \[Gamma] -
q \[Gamma])) \[Sigma] <
0 && -2 p^2 - \[Gamma] (-1 + \[Sigma]) \[Sigma] +
2 p (q + \[Sigma]) > 0 &&
2 p^2 + (4 + \[Gamma] (1 + \[Gamma]) (-1 + \[Sigma])) \[Sigma] -
2 p (q + \[Sigma] + 2 \[Gamma] \[Sigma]) >
0 && (p - q) (-4 + 2 p \[Gamma] + \[Gamma]^2) + (4 + q \[Gamma]^2 -
p \[Gamma] (2 + \[Gamma])) \[Sigma] >
0 && -(p - q) (-4 +
2 p \[Gamma] + \[Gamma]^2) + \[Gamma] (p (-2 + \[Gamma]) - (1 +
q) \[Gamma]) \[Sigma] + \[Gamma]^2 \[Sigma]^2 > 0 &&
p^2 (p - q)^2 -
p (p - q) (2 p + \[Gamma]) \[Sigma] + (1 + p^2 +
p (p - q) \[Gamma]) \[Sigma]^2 - \[Sigma]^3 >
0 && (-4 + \[Gamma] (4 p + \[Gamma] - \[Gamma] \[Sigma])) <
0 && (-1 + p \[Gamma]) < 0 && 0 < p < 1 && 0 < \[Sigma] < 1 &&
0 < \[Gamma] < 1 && 0 < q < 1, q]
