黑洞吧 关注:46,296贴子:228,043
  • 2回复贴,共1

介绍一位对黑洞研究作出过巨大贡献的天文学家-----卡尔·史瓦西

只看楼主收藏回复

简介
     Karl Schwarzschild    
德国天文学家,物理学家。1873年10月9日生于法兰克福,1916年5月11日卒于波茨坦。他16岁时写出关于三体问题周期解的论文,18岁进斯特拉斯堡大学,20岁进慕尼黑大学,23岁获博士学位。1896~1900年在维也纳天文台和慕尼黑天文台工作,1901~1909年任格廷根大学教授和大学天文台台长,1909年任波茨坦天体物理台台长。第一次世界大战爆发后在德军中服役。K·史瓦西在天文学的几个领域中都有贡献。
实测方面贡献
     在实测方面,他发现了照相底片变黑定律,发明了焦外照相法天体测光,奠定了照相测光的基础。史瓦西是照相测光的开创者之一,曾提出底片上的星象密度并不取决于星光照度和露光时间的乘积,而取决于星光照度和露光时间的p(p小于1)次方的乘积,后来这一关系被称为史瓦西定律,p则称为史瓦西因子。1906年指出恒星大气中自内向外的热转移主要不是靠对流而是靠辐射,并提出恒星大气中辐射平衡的概念和局部热动平衡的假设。认为整个恒星大气并不处于严格热动平衡状态,但就离恒星中心同样距离的某一薄层而言,可看成处于局部热动平衡下,并可引入一个局部温度来表征它的热状态。在这基础上建立了辐射转移的定量理论。1916年推导出广义相对论球对称引力场的严格解,表征了球对称物体所产生的静态引力场的四维时空的度量性质。后来被命名为史瓦西度规。还提出了物体的史瓦西半径的概念。当一颗恒星发生引力坍缩、收缩到这一半径大小时,就会变成黑洞。他还是玻尔原子光谱理论的先驱者,和A·索末菲各自独立地提出了普遍“量子化定则”,推出了电场对光影响的斯塔克效应的完整理论。
理论方面贡献
     在理论方面,他将辐射平衡的概念引入天体物理学,最先清楚认识到辐射过程在恒星大气热转移中的重要作用,并提出处理这种过程的数学方法。他把近代统计方法应用于天文研究,发现了以他命名的恒星速度椭球分布。对天文光学仪器的设计理论也作出了重要贡献。
理论物理方面贡献
     他是玻尔原子光谱理论的先驱者之一。他和索末菲彼此独立地提出了一般的“量子化定则”,得出斯塔克效应的完整理论。1916年,他找到了广义相对论球对称引力场的严格解,即史瓦西解(见史瓦西度规)。这个解描述了球形天体附近的光线和粒子的运动行为,在现代相对论天体物理,特别是黑洞物理中,起着关键性的作用。他首先提出,在离致密天体或大质量天体的中心某一距离处,逃逸速度等于光速,即在此距离以内的任何物质和辐射都不能溢出。后人将此距离称为史瓦西半径,并把上述天体周围史瓦西半径处的想象中的球面,叫作视界。为了纪念他的功绩,德意志民主共和国科学院天文台被命名为史瓦西天文台。


1楼2010-11-27 10:51回复
    史瓦西半径:
       史瓦西半径的公式,其实是从物件逃逸速度的公式衍生而来。它   史瓦西半径
    将物件的逃逸速度设为光速,配合万有引力常数及天体质量,便能得出其史瓦西半径。      Rs=2Gm/c^2      推导过程:      由 F=GmM/r^2      得知 r 越小 则F越大      而引力F 正比于 物体吸引落下速度V      且速度V最大值为C      求星体半径临界直(V=C之 r 临界直) ; 即史瓦西半径      由 F=ma=mg 得 GMm/r^2 = mg 故 g = GM/r^2 由固定重力场位能得非固定重力场位能公式      a. 将 E=mgh 代换成 E=GMmh/r^2 且 h=r 故 E=GMm/r 表位能      b.列受星体吸引物质之速度与位能对应式 求得临界半径r(史瓦西半径)      1/2 mv^2 = GMm/r      做劳伦兹变换      1/2 mv^2/√(1-v^2/c^2)= GMm/r√(1-v^2/c^2)      得到r = 2GM/V^2      当v=c 求r之临界直      则全式可得      Rs = 2GM/C^2 ;      Rs为史瓦西半径 ;      左为史瓦西半径公式      (G为引力常数 M为恒星质量 C为光速)      事实上,牛顿力学及广义相对论能导出相同结果,纯粹是巧合而已。
    


    2楼2010-11-27 10:53
    回复
      史瓦西半径是卡尔·史瓦西(Karl Schwarzschild、也有翻译做卡尔·史瓦兹旭尔得)于1915年针对广义相对论方程关于球状物质分布的解,此解的一个结果是可能存在黑洞。他发现这个半径是一个球状对称、不自转的物体的重力场的精确解。      根据爱因斯坦的广义相对论,黑洞是可以预测的。他们发生于史瓦西度量。这是由卡尔·史瓦西于1915年发现的爱因斯坦方程的最简单解。      根据史瓦西半径,如果一个重力天体的半径小于史瓦西半径,天体将会发生坍塌。在这个半径以下的天体,其间的时空弯曲得如此厉害,以至于其发射的所有射线,无论是来自什么方向的,都将被吸引入这个天体的中心。因为相对论指出任何物质都不可能超越光速,在史瓦西半径以下的天体的任何物质——包括重力天体的组成物质——都将塌陷于中心部分。一个有理论上无限密度组成的点组成重力奇点(gravitational singularity)。由于在史瓦西半径内连光线都不能逃出黑洞,所以一个典型的黑洞确实是“黑”的。      小于其史瓦西半径的物体被称为黑洞(亦称史瓦西黑洞)。在不自转的黑洞上,史瓦西半径所形成的球面组成一个视界。(自转的黑洞的情况稍许不同。)光和粒子均无法逃离这个球面。银河中心的超大质量黑洞的史瓦西半径约为780万千米。一个平均密度等于临界密度的球体的史瓦西半径等于我们的可观察宇宙的半径。


      3楼2010-11-27 10:54
      回复